Aspect Ratio of Building Form As A Tool For Enhancing Thermal Comfort In The Design of A Telecommunications Office Building (Maiduguri)

Filed in Architecture Project Topics by on October 20, 2020

Aspect  Ratio of Building Form As A Tool For Enhancing   Thermal Comfort In The Design of A Telecommunications  Office Building (Maiduguri).

ABSTRACT

Thermal comfort is  recognized as  a key parameter for healthy and  productive large workspaces found in office buildings.

Achieving occupants comfort is a priority that has a great effect on energy demand in buildings, particularly in hot climate zones.

The study aims at investigating a suitable aspect ratio of building form that will reduce the costly effects of providing thermalcomfort to occupants in buildings in a hot-dry climate of Nigeria.

An approach  was  adopted  to  study  the  geometric  properties  of  existing similar office buildings which were chosen purposively and a quantitative research method was used for the collection of data through computer simulation.

Firstly, the study examined the thermal performance of different building forms with the same floor area against their volume to surface ratio (V/S).

Forms with good thermal performance were optimized with different aspect ratios elongated along east-west orientation. ECOTECT program was used to study the energy performance of the forms on exposed surfaces.

Table of Contents

Title page…..i

Declaration………..ii

Certification… ……………iii

Dedication ………..iv

Acknowledgements…………v

Abstract ……….vii

Table of Contents ……….ix

List of Figures……..xv

List of Tables…….xviii

List of Plates…….xix

List of Appendices……..xx

Abbreviations, Definitions, Glossary and Symbols………. xxi

1.0 INTRODUCTION

1.1 Background to study

1.2 Problem Statement

1.3  Aim and Objectives

1.4  Research Questions….5

1.5   Scope…………5

1.6   Justification……….6

2.0  LITERATURE  REVIEW ………7

2.1  Thermal Comfort Conditions……….7

2.1.1  Comfort zones of hot-dry regions………..8

2.2   Energy Conservation in Telecommunication Office Building…………9

2.3  Performance of Building Forms in Enhancing Thermal Comfort …….10

2.3.1  Thermal performance of a  Building’s Volume to Surface Area Ratio (V/S)……..10

2.3.2  Relationship of  Aspect Ratio (Width to length ratio) and  Solar Radiation…………11

2.3.3 Thermal Response of Building Envelope…………………………………………………………….11 .

2.3.4  Relationship of  Relative Compactness to the Cardinal Points ………………………………18

2.3.5  Effect of  Self – Shading of Building Forms ……………………………………………………….22

2.4   Summary of Findings from Literature Review………………………………………………….24

3.0  METHODOLOGY …………………………………………………………………………………………..27

3.1 Research Design/Approach………………………………………………………………………………..27

3.1.1 Experimental/Case study Design………………………………………………………………………..27

3.2  Instruments of Data Collection …………………………………………………………………………28

2.1  ECOTECT (ECOTECT Version 11)………………………………………………………………….28

3.3   Criteria for Selecting Simulated Building Forms …………………………………………………..29

3.4   Dependent and Independent Variables…………………………………………………………………30

3.5   Procedure for Data Collection (Parametric Analysis)……………………………………………..31

3.6   Simulation inputs and assumptions ……………………………………………………………………..32

3.6.1  Analysis of Internal Heat Gain …………………………………………………………………………..32

3.7  Characteristics of Tropical Hot-dry Climate………………………………………………………33

3.8  Method of Data Analysis …………………………………………………………………………………..33

4.0  DATA ANALYSIS AND PRESENTATION………………………………………………………34

4.1   Case Study ……………………………………………………………………………………………………..34

4.1.1  Case Study I : National Communication Commission (NCC). ……………………………….34

4.1.2   Case Study II: NITEL Headquarters, Abuja………………………………………………………..37

4.1.3  Simulation Input Information …………………………………………………………………………….39

4.2 Thermal comfort conditions and comfort zone parameters for the simulation…….40

4.3  Analysis of Energy Consumption of the Building Forms ……………………………………42

4.4  Analysis of incident solar insolation on varying surfaces of cube and cylindrical

forms with varying aspect ratios ………………………………………………………………………44

4.5  Total Incident Solar Insolation on the Combined Exposed  Surfaces for Overal

Orientations…………………………………………………………………………………………………….49

4.6  DISCUSSION OF FINDINGS ……………………………………………………………………………53

5.0   DESIGN PRELIMINARIES ……………………………………………………………………………56

5.1  General Climate Characteristics ……………………………………………………………………..56

5.1.1 Temperature ……………………………………………………………………………………………………57

5.1.2  Relative humidity ……………………………………………………………………………………………58

5.1.3  Sunshine ………………………………………………………………………………………………………..59

5.1.4 Rainfall ………………………………………………………………………………………………………….59

5.2   Site Selection Criteria ………………………………………………………………………………………60

5.2.1  The proposed site ……………………………………………………………………………………………65

5.3  Site Analysis ……………………………………………………………………………………………………..66

5.3.1 Topography …………………………………………………………………………………………………….66

5.3.2  Vegetation ……………………………………………………………………………………………………..67

5.3.3 Services / Infrastructure ……………………………………………………………………………………67

5.3.4  Climate ………………………………………………………………………………………………………….67

5.4  Summary of Site and Surrounding Analysis ……………………………………………………..68

5.5  Design Inferences from the Site Analysis ………………………………………………………….68

6.0   DESIGN REPORT …………………………………………………………………………………………69

6.1  Design brief …………………………………………………………………………………………………….69

6.2  Functional flow chart ……………………………………………………………………………………….70

6.3   Spaces of the technical staff area……………………………………………………………………..71

6.3.1  Network operations room:………………………………………………………………………………..71

6.3.2  Call centre department: ……………………………………………………………………………………71

6.3.3 Contact centre department:…………………………………………………………………………………72

6.3.4  Communications centre department:…………………………………………………………………..72

6.3.5  Information security operation  department: ………………………………………………………..72

6.3.6   Geographical Information System (GIS) room: …………………………………………………..73

6.3.7   Interactive Voice response (IVR) room: …………………………………………………………….73

6.3.8  Transmissions room …………………………………………………………………………………………73 .

6.4   Bulk schedule and space grouping …………………………………………………………………..73

6.5  Schedule of Accommodation……………………………………………………………………………..77

6.6   Design Philosophy ……………………………………………………………………………………………81

6.7   Main Buildings in the Centre……………………………………………………………………………83

6.7.1 The telecommunication office………… …………………………………………………………………83

6.7.2 The vocational/technical training unit/restaurant …………………………………………………83

7.0   CONCLUSION AND RECOMMENDATION……………………………………………84

7.1   Conclusion …………………………………………………………………………………………………….84

7.2   Recommendation …………………………………………………………………………………………..85

7.3    Contribution to Knowledge …………………………………………………………………………..86

REFERENCES …………………………………………………………………………………………………….87

APPENDICES ……………………………………………………………………………………………………..91

INTRODUCTION

Background to study

Telecommunication office buildings are essential to the economy; however, they are also significant consumers of energy required to maintain thermal comfort.

(Creamer Media Reporter, 2015). Thermal comfort is recognized as a key parameter for healthy and productive workplaces, some of which are found in telecommunications building.

At the same time, lowering energy use in commercial building is vital if a significant reduction in greenhouse gas emissions is to be achieved.

Traditionally thermal comfort has been achieved at the expense of significant energy use for heating and/or cooling (Ismail, Jusoh & Makhtar, 2010).

In a major study, Taylor, Fuller & Luther (2008) found that a well- designed building should be able to provide good thermal comfort, while simultaneously having low energy consumption.

REFERENCES

African Business Central. (2014). NATCOM acquires Nigeria’s NITEL and MTEL for $252.5M. Abuja: African Business Central.

Agboola, O. P. (2011). Importance of climate to architectural designs in Nigeria. Journal of environmental issues and agriculture in developing countries, 3(1), 1528.

AlAnzi, A., Seo, D., & Krarti, M. (2009). Impact of Building Shape on Thermal Performance of Office Buildings i Kuwait. Energy Conversion and Management 50, 822-828.

ASHRAE. (2007). ANSI/ASHRAE/IESNA Standard 90.1-2007. In B. E. Criteria.

ASHRAE. (2009). nonresidential cooling heating load calculation. In ASHRAE Handbook Fundermentals (SI Edition ed.).

Athanassios, T., Andreas, K. A., & Panagiota, K. (2007). Simulation of Facade and Envelope Design Option for New Institutional Buiding.Sl. In S. Energy.

Comments are closed.

Hey Hi

Don't miss this opportunity

Enter Your Details