Design And Development of An Optimized Fluxgate Magnetometer : Current School News

Design And Development of An Optimized Fluxgate Magnetometer For Improved Earth’s Magnetic Field Studies

HURRY NOW! APPLY NOW FOR USA JOBS WITH FREE VISA!


 

Design And Development of An Optimized Fluxgate Magnetometer For Improved Earth’s Magnetic Field Studies.

ABSTRACT

This research work was centered on optimizing the Fluxgate Magnetometer Sensor (FMS) at reduced noise level and enhanced sensitivity. The FMS was developed using Manganese Zinc(MnZn) ferrite alloy different from the usual permalloy and amorphous alloy materials.

The developed FMS using MnZn ferrite achieved reduced sensor dimensions with high sensitivity and reduced noise level, thus meeting the necessary requirements for the earth‟s magnetic field studies.

However, the sensor was realized using MnZn ferrite ring core material, excitation and pick-up coils, and the interface electronic circuits. The performance of this designed and developed FMS was optimized using the modified Firefly OptimizationAlgorithm (FOA).

The characteristics of the developed fluxgate sensors were modeled using the modified FOA and the matching between the excitation and detection circuits was then considered.

Analysis was then carried out to determine the values of relevant parameters susing modified FOA written in the MATLAB program. The model yielded an accurate prediction of the sensitivity and noise level compared to the commonly used conventional Part-by-Part Optimization (PPO) and analytical optimization techniques.

Three-ring core FMS with different diameters (14 mm and 10 mm) were constructed based on the PPO technique while12 mm ring core was constructed based on the FOA technique. Experiments were employed to validate the PPO and the FOA techniques.

TABLE OF CONTENTS

TITLE PAGE…………………………………………………………………………………………………………… ii
DECLARATION…………………………………………………………………………….iii
CERTIFICATION …………………………………………………………………………………………………… iv
DEDICATION…………………………………………………………………………………………………………. v
ACKNOWLEDGEMENTS………………………………………………………………………………………. vi
ABSTRACT…………………………………………………………………………………………………………..viii
TABLE OF CONTENTS………………………………………………………………………………………….. ix
LIST OF FIGURES ………………………………………………………………………………………………..xiii
LIST OF PLATES ………………………………………………………………………………………………….. xv
LIST OF TABLES…………………………………………………………………………………………………. xvi
LIST OF ABBREVIATIONS…………………………………………………………………………………xviii
CHAPTER ONE: INTRODUCTION
1.1 Background…………………………………………………………………………………………………… 1
1.2 Motivation…………………………………………………………………………………………………….. 5
1.3 Problem Statement…………………………………………………………………………………………. 5
1.4 Significant Contributions of the Research …………………………………………………………. 6
1.5 Research Aim and Objectives………………………………………………………………………….. 7
1.6 Methodology…………………………………………………………………………………………………. 8
1.7 Organization of the Thesis………………………………………………………………………………. 9
CHAPTER TWO: LITERATURE REVIEW
2.1 Introduction………………………………………… ………………………………10
2.2 Review of Fundamental Concepts………………… …. …………………….……….10
2.2.1 Overview of Earth‟s Magnetic Field and Magnetic Storm……….. ………………..10
2.2.2 Overview of Fluxgate Magnetometers………………………… ……………………….12
2.2.3 Principle of Operation of Fluxgate Magnetometers…………… ………………………16
2.2.4 Classification of Magnetic Sensors and their Technologies………… ………………20
2.2.5 Fluxgate Sensor Electronics……………………………………………. ……………….24
2.2.5.1Square Wave Current Generator………………………………………. ……………….25
2.2.5.2 Frequency Divider………………………… ……………………………… ……………….27
2.2.5.3 Voltage to Current Converter………………………………………….. ……………….28
2.2.5.4 Detection Electronics…………………………………………………….. ……………….30
2.2.5.5 Synchronization Switch………………………… ………………………. ……………….32
2.2.5.6 Ferro-resonance Excitation Drive and Parametric Amplification…… ……………….. .34
2.2.6 Fluxgate Magnetometer Core Materials……………….…………… ………………….. 35
2.2.7 Magnetization Behavior of Ferromagnetic Materials…………………………………… 36
2.2.8 Soft and Hard Magnetic Materials………………………………………………………… 38
2.2.9 Demagnetization of Magnetic Material……… ………………………………………………… 40
2.2.10 Ferrite Core Material………………………………………………………………………………. 41
2.2.11 Helmholtz Coils…………… …………………………………………………………………………. 42
2.2.12 Overview of Optimization …………………………………………………………………………….. 44
2.2.12.1Multi-Objective Optimization…………………………………………………………………….. 47
2.2.13 Part-by-Part Optimization of Fluxgate Magnetometers…………………………………. 49
2.3 Review of Similar Works……………………………………………………………………. 49
2.4 Summary………………………………………………………………………………………. 58
CHAPTER THREE: MATERIALS AND METHODS
3.1 Introduction…..……………………………….. …………………………………………60
3.2 Materials…..…………… ……………………….. ……………………………………….60
3.2.1 types of equipment used…………………………………. ……………………………………….60
3.3 Method…..………………………………………. ………………………………………62
3.3.1 Fluxgate Magnetometer Drive Electronics Development and Simulations.. ……….63
3.3.1.1 Square Wave Generator Circuit…………………. …………………………………….64
3.3.1.2 Frequency Divider circuit…… ……………………. …………………………………….65
3.3.1.3 Voltage to Current Amplifier Circuit………….. …………………………………….65
3.3.2 Fluxgate Magnetometer Sense Electronics………………………………………….67
3.3.2.1 Synchronization Switch Circuit…………………. …………………………………….67
3.3.2.2 Pick-up Coil Output Voltage Amplification Circuit. ……………………………….69
3.3.2.3 Low Pass Filter…… ………………………………….. …………………………………….70
3.3.3 Analog to Digital Conversion of Fluxgate Sensor Output Signal….. ……………….71
3.3.4 Power Supply………………………………………….. …………………………………….73
3.3.5 Fluxgate Magnetometer Sensor…… ……………. …………………………………….73
3.3.6 Magnetic Field Model of Fluxgate Magnetometer………………………………….78
3.3.6.1 Finite Element Method…… ……………………….. …………………………………….78
3.3.6.2 ANSYS Program Structure………………………………………………………………….. .79
3.3.7 Fluxgate Sensor Design………………………… ……………………………………………. .86
3.3.7.1 Part-by-Part Optimization Design of Fluxgate Magnetometer……………………. ..…..86
3.3.7.2 FOA Design of Fluxgate Magnetometer and Helmholtz Coils…… ……………… .…..93
3.3.8 Fluxgate Sensor Fabrication…… …………………………………………………………….. .…..99
3.3.9 Helmholtz Coilsconstruction…… ……………… …………………………………….100
3.4 Summary……………………………………………………………………………………. ….103
CHAPTER FOUR: RESULTS AND DISCUSSIONS
4.1 Introduction….…………………………………………….. ……………………………104
4.2 FEA Simulation Results………………………………………………………………………. .…..104
4.3 Fluxgate Sensor Optimization Results…………………………………………………… .…..107
4.4 Helmholtz Coils Optimization Results…… …………………………………………….. .…..113
4.5 Performance of Fluxgate Sensors Based on Objective Three…………….. …..……116
4.5.1 Performance Responses of the Fluxgate Excitation Electronic Circuit…… ..……..116
4.5.1.1 Details of Electronic Testing Board and Experimental Set-up…… ……………….116
4.5.1.2 Time-Dependent Response……………………………… ………………………. ……..119
4.5.1.3 Response of Pick-up Coil without Detection Circuit………………………………. ……122
4.5.1.4 Responses of the Sensors Pick-up Coils with Detection Circuit……… ……… ……125
4.5.2 Sensing the Magnitude and Direction of Earth‟s Magnetic Field……………. ……..131
4.6 Performance of the Optimized FMS Based on Objective Four…………………….. ..140
4.7 Summary……..……………………………………………………………………………. 145
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS
5.1 Conclusions………………………………………….. ……………………………………146
5.2 Limitations of the Research …………………………………………………………………………. 147
5.3 Recommendations for Further Works……………………………………………… ………148
REFERENCES…………………………… ……………………………………………………….. ……149
APPENDICES………………………………………….. ………………………………. ………………158

INTRODUCTION

Background

There have been increasing demands for the integration of a magnetic field sensor that can detect the magnitude and direction of the earth‟s magnetic field in complex electronic systems (Lv and Liu, 2014).

Such a magnetic field sensing system will find application in low-power mobile devices such as in terrestrial and space navigation systems including military detection, craft navigation, medical recognition, modern digital navigation, and nondestructive inspection (David et al., 2010; Hsieh et al., 2013).

The aim of this research is to design and develop an optimized Fluxgate Magnetometer Sensor (FMS), which has a small size, high sensitivity, low noise, low power consumption, and is capable of detecting the magnitude and direction of the earth‟s magnetic field.

In order to optimize the performance of magnetometers, different optimization techniques for their structures and core materials had been developed.

For example, the conventional approach was based on Part-by-Part Optimization (PPO) technique, which includes designing the sensor core first, then select the dimension of the pick-up coil, and finally develop a low-noise detection circuit.

However, the PPO technique is too slow, time-consuming, and expensive(Grosz and Paperno, 2012)

REFERENCES

Abbott, J. J. (2015). Parametric design of tri-axial nested Helmholtz coils. Review ofScientific Instruments, 86/1-10.
Adewole A.P.; Otubamowo, K.; Egunjobi, T.O. and Kien, M. N. (2012). A comparative studyof simulated annealing and genetic algorithm for solving the travelling salesmanproblem. International Journal of Applied Information Systems (IJAIS), 4(4).
Ali, A.S.; Siddharth, S.; Syed, Z. and El-Sheimy, N. (2012). Swarm optimization-basedmagnetometer calibration for personal handheld devices. Sensors, 12/12455-12472.
Alicke, F. (2015). Low-Power Signal Conditioning for a Pressure Sensor. TexasInstruments, Texas.
Andò, B.; Baglio, S.; Bulsara, A.; and Malfa, S. (2010). RTD Fluxgate Behavioral Model forCircuit Simulation. In Proceedings of European Conference on Sensors, Actuatorsand Microsystems (Eurosensors XXIV), Linz, Austria, 5-8/1288–1291.
Andò, B.; Baglio, S.; Bulsara, A.R.; and Malfa, S. (2012). Adaptive modeling of hystereticmagnetometers. IEEE Transactions on Instrumentation and Measurements, 61/1361–1367.
ANSYS (2011). Low-Frequency Electromagnetic Analysis Guide, ANSYS, Inc.
ANSYS (2014). Low-Frequency Electromagnetic Analysis Guide, ANSYS, Inc.
Ansari, M.T M. H.; Sulaiman, N, and Jusoh, A. Z. (2015). Analysis of geometrical features ofe-shaped core μ-coil fluxgate magnetometer. ARPN Journal of Engineering andApplied Sciences, 10(18)/8417-8420.
Anuradha, G.; Devi, D.L. and Babu, M.S.P (2014). ANTRANK: An ant colony algorithm forranking web pages. International Journal of Emerging Trends & Technology inComputer Science (IJETTCS), 3(2)/208-212.
Arora, S. and Singh, S. (2013). The firefly optimization algorithm convergence analysis andparameter selection. International Journal of Computer Applications (0975 – 8887)69(3)/48-52.
Aylaj, B. and Belkasmi, M. (2014). New simulated annealing algorithm for computing theminimum distance of linear block codes. Advances in Computational Research,6(1)/153-158.
Back, T., Hoffmeister, F. & Schwefel, H. (1991). A survey of evolution strategies.Proceedings of the Fourth International Conference on Genetic Algorithms and theirApplications, San Mateo, CA, /2-9.
Bao, X.; Liu, S.; Zhang, N. and Dong, M. (2015). Combinatorial test generation usingimproved harmony search algorithm. International Journal of Hybrid InformationTechnology, 8(9)/121-130.
Bae, S.; Hong, Y.K.; Lee, J.; Park, J.; Jalli, J.; Abo, G.S.; Kwon, H.M. and Jayasooriya,C.K.K. (2013). Pulsed ferrite magnetic field generator for through-the-earthcommunication systems for disaster situation in mines. Journal of Magnetics,18(1)/43-49.
Bajeh, A. O. and Abolarinwa, K. O. (2011). Optimization: A comparative study of geneticand tabu search algorithms. International Journal of Computer Applications (IJCA),31(5).
Bai, Q. (2010). Analysis of particle swarm optimization algorithm. Journal of ComputerInformation Science, 3/180–184.
Baschirotto, A.; Borghetti, F.; Dallago, E.; Malcovati, P.; Marchesi, M.; Venchi, G. (2006). ACMOS front-end circuit for integrated fluxgate magnetic sensors. Circuits andSystems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium,4/4406.
Baschirotto, A.; Dallago, E.; Ferragina, V.; Ferri, M.; Grassi, M.; Malcovati, P.; Marchesi,
M.; Melissano, E.; Morelli, M.; Rossini, A.; Ruzza, S.; Siciliano, P.; Venchi, G. 146(2007). A CMOS 2D Micro-Fluxgate Earth Magnetic Field Sensor with DigitalOutput. Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of TechnicalPapers. IEEE International, /390,610.

CSN Team.

    Hey You!

    Join Over 5 Million Subscribers Today!


    => FOLLOW US ON INSTAGRAM | FACEBOOK & TWITTER FOR LATEST UPDATE

    Tags: ,

    Comments are closed.

    %d bloggers like this: