Recycling of Waste Plastic Materials for the Production of Ceiling Tiles Using Sawdust Reinforcement

Advertisements

ABSTRACT

Plastic was recognised as the most useful innovation in the 19th century by many scientists for its unique characteristics. However, it has become the biggest environmental hazard in the 20th century when it is disposed as waste.

Plastic do not degrade naturally and when it is disposed in an ad hoc manner, it creates numerous environmental problems that can deteriorate the life of flora and fauna.

Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today.

The principal aim of this study is to recycle plastic wastes with sawdust as an additive into a variety of products like plastic tiles (ceiling tile), which are Civil Engineering materials. Mainly, sachet water plastic wastes were collected for this experiment.

Advertisements

The waste materials went through the process of sorting, washing, cutting, drying and pre-melting before dividing into different weight of 800grams, then recycling was done after heating to molten form and thoroughly mixing with different particle sizes of sawdust as additive.

Melting was done using locally fabricated box furnace. The sawdust was sieved using sieves 6, 8, 10, 14 and 25 which

represented 6.25, 12.50, 18.75, 25.00 and 31.25% respectively of sawdust to 800grams of plastic. After thoroughly mixing the sawdust with the molten plastic, it was then casted into the mould and left to completely cool and in some cases left till the next day before removal from the mould to form the plastic tile.

Tensile and hardness tests were done on the materials; the tensile strength test results varied as they showed higher tensile stress for some and low for others.

Hardness survey test was conducted at different points on each material and the results showed that strength not uniformly distributed over all points of the tile and this result faulted the recycling process.

Engineering properties of the recycled materials were compared with existing local and foreign tiles respectively and from the results, some of the produced materials matched the qualities of the local tile and was even better than the foreign tiles.

Therefore, with improved recycling process plastic wastes can be converted into useful products for the betterment of the environment.

TABLE OF CONTENTS

TITLE PAGE… … … … … … … … … … … i
CERTIFICATION PAGE… … … … … … … … … ii
DEDICATION… … … … … … … … … … … iii
ACKNOWLEDGEMENT… … … … … … … … … iv
ABSTRACT… … … … … … … … … … … v
TABLE OF CONTENTS… … … … … … … … … vi
LIST OF TABLES… … … … … … … … … … xi
LIST OF PLATES… … … … … … … … … … xii
LIST OF FIGURES… … … … … … … … … … xiii
ABBREVIATIONS… … … … … … … … … … xvi

CHAPTER ONE: INTRODUCTION

1.1 Background of study… … … … … … … … … … 1
1.2 Research problem… … … … … … … … … … 2
1.3 Research objectives… … … … … … … … … … 3
1.4 Significance of research… … … … … … … … … 4
1.5 Scope of Research… … … … … … … … … … 5
1.6 Research limitations… … … … … … … … … … 5
1.6.1 Collection was difficult and expensive… … … … … … … 6
1.6.2 Extensive sorting is required… … … … … … … … 6
1.6.3 Lack of recycling equipment… … … … … … … … 6
1.6.4 Inefficiency of the Recycling Process… … … … … … … 7
1.6.5 Greater Quantity of Waste Needed for Recycling… … … … … 7

CHAPTER TWO: LITERATURE REVIEW

2.1 Definition of Recycling… … … … … … … … … 8
2.2 History/Origin of Recycling…… … … … … … … … 8
2.2.1 Recycling… … … … … … … … … … … 8
2.2.2 Overview of Plastics… … … … … … … … … 10
2.2.3 Overview of Plastic Recycling… … … … … … … … 14
2.2.3.1 Recycling codes… … … … … … … … … … 14
2.2.3.2 Plastic Recycling… … … … … … … … … … 14
2.2.3.3 Challenges in plastic Recycling… … … … … … … 15
2.2.3.4 Processes in plastic Recycling… … … … … … … … 15
2.3 Commonly Recycled Materials… … … … … … … … 16
2.4 Applications of Recycling in different kinds of plastics… … … … … 20
2.4.1 Polyethylene Terephthalate (PET or PETE)… … … … … … 22
2.4.2 Polyvinyl-Chloride (PVC)…… … … … … … … … 22
2.4.3 High Density polyethylene (HDPE)… … … … … … … 23
2.4.4 Polystyrene (PS)… … … … … … … … … … 23
2.4.5 Other Plastics… … … … … … … … … … 23
2.5 Plastics in the Society… … … … … … … … … 24
2.5.1 The Image of Plastics… … … … … … … … … 24
2.5.2 Production and Consumption of Plastics…… … … … … … 24
2.5.3 Plastics in Vehicles… … … … … … … … … 26
2.6 Ecological case for Recycling… … … … … … … … 29
2.6.1 Effects of the Environment on plastics… … … … … … … 31
2.6.2 Environmental Aspects of Plastic Recycling… … … … … … 32
2.6.2.1 Raw Materials and Uses of Resource… … … … … … … 32
2.6.2.2 Plastic Products save Energy… … … … … … … … 32
2.6.2.3 Reduce, Reuse, Recycle and Recovery of Plastics… … … … … 33
2.6.2.4 Recycling and the Environment… … … … … … … 33
2.7 Environmental Impacts of Polyethene Plastic Generation and Disposal in Nigeria… 34
2.8 Systems for Plastic Recycling… … … … … … … … 37
2.9 Advantages and Disadvantage of Recycling… … … … … … 41
2.9.1 Advantages of Recycling… … … … … … … … … 42
2.9.2 Disadvantage of Recycling… … … … … … … … 43
2.10 Solid Waste Management Overview… … … … … … … 44
2.11 Public Support for Recycling… … … … … … … … 50
2.12 Economic Issues Relating to Recycling… … … … … … … 51
2.13 Current Trends in Plastic Recycling… … … … … … … 53
2.14 Challenges and Opportunities for Improving Plastic Recycling… … … 53
2.15 Actions to Boost Recycling of Plastics… … … … … … … 54
2.16 Wear characteristics of Plastics… … … … … … … … 63
2.17 Conditions for material selection of Plastics… … … … … … 63
2.18 Sawdust Overview… … … … … … … … … … 66

2.24 CHAPTER THREE: EXPERIMENTAL METHODS AND MATERIALS

3.1 Experimental Apparatus… … … … … … … … … 69
3.1 Source of Samples… … … … … … … … … … 69
3.3 Rate of Generation of Waste Plastic Materials… … … … … … 70
3.4 Material Preparation… … … … … … … … … … 70
3.4.1 Sample Preparation for Plastic Materials… … … … … … 70
3.4.2 Sample Preparation for Sawdust… … … … … … … … 70
3.5 Fabrication of Crucible and Moulds… … … … … … … 71
3.6 Mode of Operation of the Box furnace… … … … … … … 71
3.7 Experimental Procedure… … … … … … … … … 74
3.8 Inefficiency of the Recycling Process… … … … … … … 75
3.9 Method of Laboratory test on Materials… … … … … … … 76
3.9.1 Tensile Strength Test… … … … … … … … … 76
3.9.2 Hardness Test… … … … … … … … … … 76
3.10 Recycling Process Involved in this Research… … … … … … 78
3.11 Other Equipment Required for Plastic Recycling Processes… … … … 79
3.12 Mechanical and Physical Properties of Plastics… … … … … … 85

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1 Presentation of Results… … … … … … … … … 105
4.2 Effect of Particle size on Strength properties… … … … … … 105
4.3 Effect of Particle weight on strength properties… … … … … … 110
4.4 Variation of Strength properties within material… … … … … … 114
4.5 Comparative Analysis between materials and existing tiles… … … … 116
4.6 Statistical Analysis… … … … … … … … … … 117

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION

5.1 Conclusion… … … … … … … … … … … 119
5.2 Recommendation… … … … … … … … … … 120
REFERENCES… … … … … … … … … … … 121
APPENDIXES… … … … … … … … … … … 130

INTRODUCTION

1.1 Background to the Study

Recycling is a process of re-using waste materials and converting them into new products to remove from the waste a potentially useful material.

This will reduce the consumption of fresh raw materials, reduce energy usage, reduce air pollutions (from incineration) and water pollution (from land filling) thereby reducing the need for “conventional” waste disposal and lower greenhouse gas emissions produced during plastic production (Lyons and Burford, 1998).

A key component of modern waste reduction and is the third component of the “reduce, reuse, recycle” waste hierarchy. There are some 150 standards related to recycling of waste such as (ISO 15270:2008) for plastic waste and (ISO 14001: 2004) for environmental management control of recycling practice.

Recyclable materials include glass, paper, metal, plastic, textiles and e-wastes. Although similar in effect, the composting or other reuse of biodegradable wastes such as food or garden waste is not recyclable (Lyon and Burford, 1993).

Materials to be recycled are either brought to a collection center or picked up from the curbside, then sorted, cleaned, and reprocessed into new materials bound for manufacturing.

In the strictest sense, recycling of materials would produce a fresh supply of the same materials for example; office paper would be converted into new office paper or used form polystyrene into new polystyrene.

However, this is often difficult or too expensive (compared with producing the same product from raw materials or other sources). Therefore “recycling” of many products or materials involves the reuse of produced materials (e.g. paper board) instead.

REFERENCES

ACRR (2004). Good practices guide on waste plastics recycling. Brussels,Belgium:Association of Cities and Regions for Recycling.
Addison, R. F, Hansen, P.D and Wrigth, E. C., (1991). Hepatic Mon-Oxygenase Activities in American place from Miramichi Estuary, N.B. Canadian Technical Report of fisheries and Aquatic science No. 1800 Fisheries and Oceans.
Agagu, O. K., (2009). Threats to the Nigerian environment: a call for positive action. Being a paper delivered at the 2009 Chief S.L. Edu Memorial Lecture, Nigerian Conservation Foundation, Lagos. 42pp
Aguado, J., Serrano, D. P. and San Miguel, G. (2007). European trends in the feedstock recycling of plastic wastes. Global NEST J. 9, 12–19.
Akinro, A.O et. al., (2012). Environmental Impact of Polyethylene generation and Disposal in Akure City, Nigeria. Online ISSN:2249-4626

Advertisements

Comments are closed.

Hey Hi

Don't miss this opportunity

Enter Your Details