Standoff Bomb Detective Techniques By Neutron Interrogation Technique

Filed in Articles by on November 17, 2022

ABSTRACT

Due to terrorist use of explosive devices, intense interest has been directed towards the development of techniques and instrumentation to detect explosives.

A number of analytical techniques are currently under investigation for bulk explosive detection. Several methods have been successfully commercialized including x-rays, neutrons, electromagnetic imaging, and gamma- rays that see widespread field use.

A key limitation of all currently utilized field techniques is that they require close proximity or physical interaction with the object being analyzed.

The ideal bulk explosive detection technique would be able to detect bulk amounts of explosives from a distance to ensure personnel safety.

Neutron interrogation has been proved to be the only currently viable technique that can be utilized to sense bulk amounts of explosives at standoff distances.

This review compares currently used explosive detection techniques with recently developed standoff methods. We emphasize the development of Neutron interrogation for standoff explosive detection.

 INTRODUCTION

Standoff bomb detection technique is a non-destructive inspection process to determine whether a container contains explosive materials. This is commonly used at airports, ports, and border control.

REFERENCE

Alvarez, L. W., & Bloch, F. (1940). Phys. Rev. 67 111
Beckurts,  K.  H & Wirtz, K. (1964 ).Neutron physics, 2nd edn. (New York: Springer Verlag).
Bell, I. B., & Glasstone, S . (1970). Nuclear reactor theory (New York: Van Nostrand).
Bothe , W., & Becker, G  .H. (1930) Z. Phys. 66 289
Brooks,  F. D., Drosg, M., Smit, F.D., & Wikner, C. (2011). Detection of explosive remnants of war by neutron thermalization. Applied Radiation and Isotopes, 70(1), 119-127.
Buffler, A. (2004). Contraband detection with fast neutrons. Radiation Physics and Chemistry, 71, 853-861.
Byrne, J., Morse.  J., Smith,  K .F., Shaikh, F., Green,  K. &  Greene.  G .L., (1980) Phys. Lett. B92 274
Casalinuovo, I.A., Di Pierro, D., Coletta, M., &  Di Francesco, P. (2006). Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection. Sensors, 6, 1428-1439.
Chichester, D. L., Simpson, J. D.,& Lemchak, M.(2007).Advanced Compact Accelerator Neutron Generator Technology For Active Neutron Interrogation Field Work. 629- 637.
Chadwick , J. (1932). Proc. R. Soc. (London). Al36 692
Chadwick , J., &  Goldhaber, M., (1934) Nature (London). 134  237
Chandler, K. C. (1972) Report  ORNL . 4744
Christensen, C. J., Nielson.  A, Bahinsen, A., Brown, W. K., &  Rustad,  B. M. (1972) Phys. Rev. D5 16-28.
Cohen , V. W., Corngold, N. R., &  Ramsey, N. F. (1956). Phys. Rev. 104 283
Coleman , W. A (1970). Report  ORNL  4606
Collin, O.L., Niegel, C., DeRhodes, K.E., McCord, B., & Jackson, G.P. (2006). Fast Gas Chromatography of Explosive Compounds Using a Pulsed-Discharge Electron Capture Detector. Journal of Forensic Sciences, 51, 815-818.
Conrad, H. (1983). Nuclear technologies in a sustainable energy system (eds) Baner, G. S & McDonald, A.  (New York: Springer-Verlag)
Delgado, J. (2003). Relics of the Kamikaze: Archaeology. Archaeological Institute of America. 56 (1).
Dicken, A., Rogers, K., Evans, P., Rogers, J.,& Chan, J.W. (2010). The separation of X-ray diffraction patterns for threat detection. Applied Radiation and Isotopes, 68, 439-443.
Dolan,  T. J (1982). Fusion research (London:  Pergamon  Press) Vol. 3
Eiceman, G., &  Karpas, Z. (2005). Ion Mobility Spectrometry. CRC Press.
Fermi,  E .,&  Marshall,  L .(1947). Phys. Rev. 22 1139
Filenko, D., Ivanov, T., Volland, B.E., Ivanova, K., Rangelow, I.W., Nikolov, N., & Fillipov,  W. V (1962). Nucl. Fusion Suppl. 2 577
Gohler, R., Kalus , J., &  Mampe,  W. (1982) Phys. Rev. D25  2887
Green , G . L et  a1 (1979). Phys. Rev. D20  2139
Gotszalk, T., & Mielczarski, J. (2008). Experimental setup for characterization of self-actuated microcantilevers with piezoresistive readout for chemical recognition of volatile substances. Rev. Sci. Instr., 79, 094101-6.
Glascock, M.D.(1996). Tables for Neutron Activation Analysis.
Gudmundson, E., Jakobsson, A., & Stoica, P. (2009). Based Explosives Detection-An Overview. IEEE -Transection on Signal Processing, 56(3), 887-894.
Gut, K., Zakrzewski, A., & Pustelny, T. (2010). Sensitivity of polarimetric waveguide interferometer for different waveguides. 1140-1142.
Harding, G. (2004). Radiation X-ray scatter tomography for explosives detection. 869-881. Hatab, N.A., Eres, G., Hatzingerc, P.B., Gua, B. (2010). Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy. J. Raman Spectroscopy, 41, 1131-1136.
Halpern , T. et al(1937 )Phys. Rev. 52 142.
Irsch,  R .L (1975).  Annu. Rev. Nucl. Sci. 25.
Imshennik, V. S (1973). Nuci. Fusion 13 929.
Iyengar,  P. K (1973). Sixtieth  Session of the Indian Science Congress, Chandigarh.
Iyengar , P. K (1979). 15th Founder Memorial  Lecture, Shri Ram Institute  for Industrial Research, Delhi.
Joseph, N. (1986). Military Technology: The Gunpowder Epic. Cambridge University Press. pp. 189–190.
Joseph, N. (1974). Science and Civilization in China: Military Technology : the gunpowder epic .Cambridge University Press. p. 191.
Fillipov,  W.V. (1962) Nucl. Fusion Suppl. 2 577.
Gohler R, Kalus  J and  Mampe  W 1982 Phys. Rev. D25  2887.
Green , G.  L. et  al (1979). Phys. Rev. D20  2139.
Halpern , T. et al (1937). Phys. Rev. 52 142.
Irsch,  R. L. (1975).  Annu. Rev. Nucl. Sci. 25
Imshennik, V .S .(1973) Nuci. Fusion 13 929
Iyengar , P. K. (1973). Sixtieth  Session of the Indian Science Congress, Chandigarh
Iyengar , P. K .(1979). 15th Founder Memorial  Lecture, Shri Ram Institute  for Industrial Research, Delhi.
Kanu, A.B., Dwivedi, P., Tam, M., Herbert, L.M., Hill, H. (2008). Ion mobility-mass spectrometry.Wiley: 43, 1-22.
Knowles , J. W .(1962). Can. J. Phys. 40 257
Kosterev, A.A., Tittel, F.K., Serebryakov, D.V., Malinovsky, A.L., & Morozov, I.V. (2005). Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum., 76, 043105.
Kuznitsov, A.V., & Osetrov, O.I. (2006). Detection of improvised explosives and explosive devices in Detection and disposal improvised explosives. Springer.
Lidsky,  L. M (1975).  Nucl. Fusion 15 151.
Liu, Y., Sowerby, B.D.,& Tickner, J.R. (2008). Comparison of Neutron and High-Energy X-Ray Dual-Beam Radio- Graphy For Air Cargo Inspection. Applied Radiation and Isotopes, 66, 463-473
Maniscalce , J. A (1981). Nucl. Technol.fFusion. 1 419.
Mather , J. W ·(1964). Phys. Fluids, Suppl. 7 52.
Milstein, & Randall, L. (2008). Bomb damage assessment. (Eds.)Allan D. Pass. Forensic Science . Salem Press. p. 166.
Mostak P., Stancl.M., (2006). Detection and Disposal of Improvised Explosives (Eds: H.Schubert, A. Kuznetsov), Springer Netherlands: pp. 33–41.
Naal, Z., Park, J.H., Bernhard, S., Shapleigh, J.P., Batt, C.A., & Abrun, H.D. (2002). Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion. Analytical Chemistry, 74, 140.
Nargundkar, V. R. et al (1984) Fusion Technol. 6 93
Onat, B.M., Carver, G. & Itzler, M. (2009). A solid-state hyperspectral imager for real time standoff explosives detection using shortwave infrared imaging.
Osa, T.M., Cerionia, L.M., Forguez, J., Olle, J.M., & Pusiola, D.J. (2007). NQR: From imaging to explosives and drugs detection. 45-50.
Ostafin, M., & Nogaj, B. (2007). 14N-NQR based device for detection of explosives in landmines 43-54.
Papp, A., & Csikai, J. (2011). Detection and identification of explosives and illicit drugs using neutron based techniques. J. Radioanal. Nucl. Chem., 288, 363-371.
Pedersen, M., & McClelland, J. (2005). Optimized capacitive MEMS microphone for photoacoustic spectroscopy (PAS) applications. Proc. SPIE, 108, 5732.
Pellegrino, P. M., Holthoff, E., Farrell, M. (2015). Laser-based Optical Detection of Explosives .Taylor & Francis.
Peter, C. (1998). The Hutchinson Dictionary of Ancient and Medieval Warfare. Taylor & Francis. p. 356.
Ramanna, R. et al (1956). J. Nucl. Energy 2 145
Ramanna, R. (1984).  Prospects  of fusion power, Meghnad Saba Memorial  Lecture, SINP,  Calcutta.
Robson,  J . M .(1950). Phys. R.
Rutherford, E. (1920). Proc. R. Soc. London A97 373.
Reber, E.L., Larry, C., & Blackwood, G. (2007). Explosives Detection System: Development and Enhancements. Sens Imaging, 8, 121-130.
Regulla, D. (2000). From dating to biophysics D20 years of progress in applied ESR spectroscopy. Applied Radiation and Isotopes, 52, 1023-1030.
Robson , J. M .(1950). Phys. R.
Rutherford, E .(1920) Proc. R. Soc. London A97 373.
Satya , Murthy, N. S &  Madhav .R. L (1984). Pramana 22 313.
Schofield  P 1982 The neutron  and its applications Conf. Series No. 64 (London: Institute  of Physics) Schwinger  J S 1937 Phys. Rev. 52 1250
Schubert, H., & Kuznetsov, A. (2005). Detection and disposal of improvised explosives. Springer.

CSN Team.

Comments are closed.

Hey Hi

Don't miss this opportunity

Enter Your Details