Assessment of Nutritional Status and Acute Phase Protein Levels of Pregnant Women with Plasmodium Falciparum Attend In health Care Centers in Samaru, Kaduna State

Filed in Articles by on July 25, 2022

Assessment of Nutritional Status and Acute Phase Protein Levels of Pregnant Women with Plasmodium Falciparum Attend In health Care Centers in Samaru, Kaduna State

ABSTRACT 

Malaria in pregnancy (MiP) is a serious public health problem which can be minimized by the use of Insecticides Treated Nets (ITNs) and Intermittent Preventive Treatment of malaria in pregnancy (IPTp).

Inflammatory protein biomarker especially C-reactive protein and serum amyloid A can be used to detect MiP at subclinical level.

A total of 547 pregnant women were screened from three Primary Health Centers (PHCs) Samaru, with 75Plasmodium falciparum positive.

Malaria was diagnosed by both HRP2 (RDT) and Giemsa staining techniques, while socio-demographic data was obtained using semistructured pretested questionnaires.

Haemato-analyzer was used for Hb-concentration, leucocytes and platelets counts, while spectrophotometry was used for Iron, Zinc, Copper and Albumin estimations.ELISA technique was used for serum C-reactive protein, Amyloid A, Ferritin and Transferrin determinations.

Results obtained showed 13.7% prevalence rate of P. falciparum infection.The peak age specific incidence was 15-19 years (17.5%), with mean parasite density of 5925.

Those with no-formal education were affected mostly (17.4%) with parasite burden of 4419; while across occupation there was no difference in terms of infection rate and mean parasite density.

TABLE OF CONTENTS

Title Page……………ii
Declaration …………..iii
Certification…………iv
Dedication……………v
Aknowlegement…………..vi
Table of Contents …………viii
List of Tables………..xiv
List of Figures…………..xv
List of Appendices………..xvi
List of Abbrevations/Symbols…………..xvii
Abstract…………..xix

CHAPTER ONE……………………………………………………………………………………………………..1
1.0 INTRODUCTION ……………………………………………………………………………………………..1
1.1 Background Information ……………………………………………………………………………………1
1.2 Statement of Research Problem………………………………………………………………………….4
1.3 Justification……………………………………………………………………………………………………….4
1.4 Aim……………………………………………………………………………………………………………………5
1.4.1 Specific Objectives……………………………………………………………………………………………5
1.5 Null Hypothesis……………………………………………………………………………………………….6

CHAPTER TWO…………………………………………………………………………………………………….7
2.0 LITERATURE REVIEW…………………………………………………………………………………7
2.1 Malaria in Pregnancy…………………………………………………………………………………………7
2.1.1 Micronutrient Deficiencies and Parasitic Infections ………………………………………………9
2.1.2 Call to Close Gaps in Prevention and Treatment to Defeat Malaria ……………………….12
2.2 Acute Phase Reaction and Acute Phase Proteins ……………………………………………….13
2.2.1 The Systemic Acute Phase Reaction ………………………………………………………………….16
2.2.2 Cytokines and the Acute Phase Response …………………………………………………………..17
2.3 Acute Phase Proteins………………………………………………………………………………………..20
2.3.1 Negative Acute Phase Proteins………………………………………………………………………….20
2.3.2 Positive Acute Phase Proteins…………………………………………………………………………..20
2.4 Function of Positive Acute Phase Proteins…………………………………………………………23
2.4.1 C – Reactive Protein (Crp)………………………………………………………………………………..23
2.4.2 Serum Amyloid A (Saa)…………………………………………………………………………………..24
2.4.3 Haptoglobin (Hp)…………………………………………………………………………………………….25
2.4.4 Ceruloplasmin (Cp) …………………………………………………………………………………………25
2.5 Acute Phase Proteins and Pathology …………………………………………………………………25
2.6 Soluble Transferrin Receptors in Malaria …………………………………………………………26
2.7 Acute Phase Response in Animal Medicine ……………………………………………………….29
2.8 Nutrients and their Role in Host Resistance to Infection ……………………………………30
2.8.1 Iron (Fe)…………………………………………………………………………………………………………31
2.8.1.2 Mechanisms for the Importance of Iron to the Immune System …………………………..33
2.9 Zinc (Zn)………………………………………………………………………………………………………….33
2.9.1 Clinical and Experimental Evidence for the Essentiality of Zinc……………………………34
2.9.2 Proposed Mechanisms for the Immune Essentiality of Zinc ………………………………….35

CHAPTER THREE……………………………………………………………………………………………….37
3.0 MATERIALS AND METHODS……………………………………………………………………….37
3.1 Materials………………………………………………………………………………………………………….37
3.1.1 Reagents ………………………………………………………………………………………………………..37
3.1.2 Study Area ……………………………………………………………………………………………………..37
3.1.3 Sample Size ……………………………………………………………………………………………………38
3.1.4 Study Population …………………………………………………………………………………………….38
3.1.4.1 Inclusion Criteria ………………………………………………………………………………………….39
3.1.4.2 Exclusion Criteria…………………………………………………………………………………………39
3.1.5 Ethical Approval……………………………………………………………………………………………..39
3.2 Methods…………………………………………………………………………………………………………..39
3.2.1 Data Collection……………………………………………………………………………………………….39
3.2.2 Anthropometric Measurements…………………………………………………………………………40
3.2.3 Laboratory Analysis ………………………………………………………………………………………..40
3.2.3.1 Sample Collection…………………………………………………………………………………………40
3.2.3.2 Haematological Parameters…………………………………………………………………………..40
3.2.3.3 Assessment of Plasmodium Falciparum Infection……………………………………………..40
3.2.4 Biochemical Procedure…………………………………………………………………………………….42
3.2.4.1 Determination of Zinc Using Water- Soluble Pyridylazo Dye (1984) ………………….42
3.2.4.2 Determination of Copper Using Color 3, 5-Dibr- Paesa (1989)…………………………43
3.2.4.3 Determination of Albumin Using Silverman Et Al., (1986)…………………………………44
3.2.4.4 Determination of Iron Using Ferro Zine Method, 1980……………………………………..44
3.2.5 Quantitative Determinations of C-Reactive Proteins (Crp), Serum Amyloid A (Saa),
Ferritin and Transferrin Using Enzyme–Immunosorbent Assay (Elisa) Test Kit. ……46
3.2.5.1 C – Reactive Protein (CRP) Concentration Using ‘Perfemed’ Elisa Test Kit (Catalog
No. 10603)……………………………………………………………………………………………………..46
3.2.5.2 Ferritin Concentration using Ferritin Test System Product Code. 2825-300
(Monobind Inc. Lake Forest, Ca 92630, USA) ……………………………………………………47
3.2.5.4 Human Serum Amyloid A (Saa) Concentration Using ‘Perfemed’ Elisa Test Kit
(Catalog No. 10735) ……………………………………………………………………………………….50

CHAPTER FOUR …………………………………………………………………………………………………52
4.0 RESULTS………………………………………………………………………………………………………..52
4.1 Prevalence of P. Falciparum Infection in Pregnant Women by Healthcare Facility……………………………………………………………………………………………………52
4.2 Distribution of Pregnant Women Infected with P. Falciparum Based on SocioDemographic Characteristics…………………………………………………………………………52
4.2.1 Use of Insecticides Treated Nets (ITNs) by Pregnant Women ………………………………53
4.2.2 Use of IPTp by the Pregnant Women and Frequency of Malaria Infection……………..53
4.3 Relationship between malaria parasite density, parity and gestation period………58
4.3.1 Birth Spacing Between Last and Current Pregnancy Among Pregnant Women ………58
4.4 Indices of Iron Status Among Pregnant Women With Plasmodium Falciparum
Infection ……………………………………………………………………………………………………….61
4.5 Nutritional Status of Pregnant Women with and Without PlasmodiumFalciparum
Infection ……………………………………………………………………………………………………….61
4.6 Serum C-Reactive Protein and Malaria Parasite Density of P. Falciparum Infected
Pregnant Women Attending PHCs in Samaru Zaria ………………………………………64
4.6.1 Effect of Malaria Parasite Density (MPD) on Serum Amyloid A Of P. Falciparum
Infected Pregnant Women Attending PHCs in Samaru Zaria………………………………..64
4.6.2 Variability in Serum Amyloid A and C – Reactive Protein Based on Malaria Parasite
Density ………………………………………………………………………………………………………….67

CHAPTER FIVE…………………………………………………………………………………………………..69
5.0 DISCUSSIONS ………………………………………………………………………………………………..69

CHAPTER SIX……………………………………………………………………………………………………..77
6.0 CONCLUSION AND RECOMMENDATIONS ………………………………………………..77
6.1 Conclusion……………………………………………………………………………………………………….77
6.2 Recommendations…………………………………………………………………………………………….77

REFERENCES ……………………………………………………………………………………………………..79
APPENDICES……………………………………………………………………………………………………….96

INTRODUCTION  

The scourge never ends. This may be an apt description for one of the most prevalent infectious diseases-malaria. Globally, 3.3 billion people in 106 countries are at risk of malaria.

In 2012, malaria caused an estimated 627,000 deaths, mostly among African children. Asia, Latin America, and to a lesser extent the Middle East and parts of Europe are also affected (WMD, 2014).

Pregnant women and the under-fives form the bulk of its worst victims in endemic areas (Enatoet al., 2007).

Tackling malaria in pregnancy contributes to three of the Millennium Development Goals (MDGs), namely: goals 4 (To reduce child mortality), 5 (To improve maternal health) and 6 (To combat HIV/ AIDS, malaria and other diseases).

Almost 30 million women are threatened by malaria in pregnancy (MiP) annually with about 10,000 maternal mortalities attributed to the disease each year and about 200,000 new born deaths annually (Mokuolu, 2011).

It is obvious that malaria in pregnancy causes tremendous strain on the already weakened health systems in endemic countries.

REFERENCES

Abdalla, S.A., Hiriuchi, H., Furusawa, S., Matsuda, H., (2004). Molecular cloning and
characterization of chicken tumor necrosis factor (TNF) superfamily ligands, CD30L
and TNF-related apoptosis inducing ligand (TRAIL). Journal of Veterinary Medical
Science; 6: 643–650.
Abe A, Yamashita S, Noma A (1989). Sensitive, direct colorimetric assay for copper in
serum. Clinical Chemistry 35:552–554
Adefioye, O.A., Adeyeba, O.A, Hassan W.O., and Oyeniran O.A. (2007). Prevalence of
Malaria Parasite among Pregnant Women in Osogbo, South West Nigeria. AmericanEurasian Journal of Scientific Research. 2(1):43-45.
Administrative Committee on Coordination/Sub Committee in Nutrition (2000). Fourth
Report on the World Nutrition Situation. ACC/SCN, Geneva, Switzerland.
Alsemgeest, SPM, Taverne, MAM, Bosman R, Van der WGC, Gruys E. (1993). Peripartum
acute-phase protein serum amyloid-A concentration, in plasma of cows and fetuses.
American Journal of Veterinary Research.54: 164–167.
Arisa, W., Bandyopadhyay, S.M., Chowdhury, S., Habib, S.H., andMandal, C. (2006). Role
of C-reactive protein in complement-mediated hemolysis in Malaria. Glycoconjugate
Journal. 23:233-240.
Baek, J., Simonsen, P. E., Friis, H. and Christensen, N. O. (1996). Zinc deficiency and host
response to helminthes infection: Echinostomacaproni infections in CBA
mice.Journal of Helminthology.70: 7–12.

Comments are closed.

Hey Hi

Don't miss this opportunity

Enter Your Details