Development of a Robust Digital Image Watermarking Technique : Current School News

Development of a Robust Digital Image Watermarking Technique in Discrete Orthonormal Stockwell Transform Domain Based on Photon Polarization

ADS! Download JAMB CBT Software Now for FREE!

Development of a Robust Digital Image Watermarking Technique in Discrete Orthonormal Stockwell Transform Domain Based on Photon Polarization.

ABSTRACT

This thesis presents the development of a novel digital image watermarking technique for the shielding of intellectual property rights of digital images. Because of their digital nature, multimedia data can be duplicated, modified, and transformed. In this context, it is essential to develop a watermarking–based technique for copyright protection and authentication of digital images. The major problem of watermarking technique is how to achieve an optimal trade-off between robustness and imperceptibility.

A robust digital image watermarking technique has been developed based on cascaded Discrete Orthonormal Stockwell Transform (DOST), Discrete Wavelet Transform (DWT), and Singular Value Decomposition (SVD) using a private key obtained from the implementation of a Quantum Key Distribution (QKD) scheme and optimal scaling factor selection using Particle Swarm Optimization (PSO) algorithm. The colour images acquired are standard colour Lena, Pepper, Mandril, and Nepal Telecom logo. The colour images were decomposed into the respective three colour channels, of Red (R), Green (G), and Blue (B).

TABLE OF CONTENTS

TITLE PAGE …………………………………………………………………………………………i

DECLARATION …………………………………………………………………………………………i

CERTIFICATION …………………………………………………………………………………………ii

DEDICATION …………………………………………………………………………………………iii

ACKNOWLEDGEMENT …………………………………………………………………………………………iv

LIST OF FIGURES …………………………………………………………………………………………xii

LIST OF TABLES …………………………………………………………………………………………xxi

LIST OF ABBREVIATION …………………………………………………………………………………………xxii

CHAPTER ONE: INTRODUCTION

1.1 Background of Research …………………………………………………………………………………………1

1.2 Motivation …………………………………………………………………………………………10

1.3 1.3 Significance of Research …………………………………………………………………………………………12

1.4 Statement of Problem …………………………………………………………………………………………13

1.5 Aim and Objectives …………………………………………………………………………………………14

1.6 Scope of the Research …………………………………………………………………………………………15

1.7 Thesis Organization …………………………………………………………………………………………15

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction …………………………………………………………………………………………16

2.2 Review of Fundamental Concepts …………………………………………………………………………………………16

2.2.1 Digital Image Watermarking …………………………………………………………………………………………16

2.2.3 Characteristics of Digital Image Watermarking ……………………………………………………………….17

2.2.3.1 Imperceptibility …………………………………………………………………………………………17

2.2.3.2 Capacity …………………………………………………………………………………………18

2.2.3.3 Security …………………………………………………………………………………………18

2.2.3.4 Robustness …………………………………………………………………………………………19

2.2.3.5 Computational Complexity …………………………………………………………………………………………20

2.2.3.6 Verifiability …………………………………………………………………………………………20

2.2.4 Applications of Digital Image Watermarking …………………………………………………………………….21

2.2.5 Digital image watermarking techniques …………………………………………………………………………….22

2.2.5.1 Discrete Wavelet Transform (DWT) ………………………………………………………………………………….25

2.2.5.2 Discrete Fourier Transform (DFT) …………………………………………………………………………………….28

2.2.5.3 Singular Value Decomposition (SVD) ………………………………………………………………………………….28

2.2.5.4 Stockwell Transform (ST) …………………………………………………………………………………………30

2.2.5.5 Discrete Orthonormal Stockwell Transform (DOST) …………………………………………………….32

2.2.6 Comparison between Digital Image Watermarking Techniques …………………………………………………36

2.2.7 Attack on Digital Image Watermarking ………………………………………………………………………………………39

2.2.7.1 Signal Processing Attacks …………………………………………………………………………………………40

2.2.7.2 Geometric Attacks …………………………………………………………………………………………40

2.2.8 Performance Evaluation Metrics …………………………………………………………………………………………41

2.2.9 Cryptography …………………………………………………………………………………………42

2.2.9.1 Challenges of Classical Key Distribution …………………………………………………………………………………………44

2.2.9.2 Quantum Cryptography …………………………………………………………………………………………45

2.2.9.3 Quantum Key Distribution (QKD) …………………………………………………………………………………………47

2.2.10 Bennet and Brassard 1984 (BB84) Protocol …………………………………………………………………………………………50

2.2.10.1 Steps of QKD Processes Based on the BB84 Protocol ………………………………………………………..52

2.2.10.2 Suitable Selection of Scaling Factor …………………………………………………………………………………………55

2.2.11 Particle Swarm Optimization …………………………………………………………………………………………55

2.3 Review of Similar Works …………………………………………………………………………………………57

CHAPTER THREE : MATERIALS AND METHODS

3.1 Introduction …………………………………………………………………………………………73

3.2 Materials …………………………………………………………………………………………73

3.3 Important Assumptions …………………………………………………………………………………………73

3.4 Methodology …………………………………………………………………………………………74

3.4.1 Development of a Digital Image Watermarking Technique ……………………………………….76

3.4.2 Application of 2D DOST on the Cover and Watermark images ……………………………………77

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Introduction …………………………………………………………………………………………97

4.2 Decomposition of the Cover and Watermark Images …………………………………………..97

4.3 Determination of Scaling Factor …………………………………………………………………………….98

4.4 Definition of Different Scenarios ……………………………………………………………………………98

4.4.1 Robustness and Imperceptibility Results for Case I ………………………………………………..99

4.4.2 Robustness and Imperceptibility Results for Case II …………………………………………..100

4.4.3 Robustness and Imperceptibility Results for Case III ……………………………………………….101

4.4.4 Robustness and Imperceptibility Results for Case IV ……………………………………………….102

4.4.5 Robustness and Imperceptibility Results for Case V ……………………………………………….104

4.4.6 Robustness and Imperceptibility Results for Case VI ……………………………………………….106

4.4.7 Robustness and Imperceptibility Results for Case VII ……………………………………………….108

4.5 Other Scenarios Considered for Comparison ……………………………………………………………………..111

4.5.1 Robustness and Imperceptibility Results for Case VIII ……………………………………………….111

4.5.2 Robustness and Imperceptibility Results for Case IX ……………………………………………….112

4.5.3 Robustness and Imperceptibility Results for Case X ……………………………………………….113

4.5.4 Robustness and Imperceptibility Results for Case XI ……………………………………………….114

4.6 Determination of Optimal Scale Factor Based on Individual Attack Scenarios using PSO ………………..116

4.7 Definition of Different Scenarios …………………………………………………………………………………………117

4.7.1 Robustness and Imperceptibility Results for Case I ……………………………………………….118

4.7.2 Robustness and Imperceptibility Results for Case II ……………………………………………….119

4.7.3 Robustness and Imperceptibility Results for Case III ……………………………………………….120

4.7.4 Robustness and Imperceptibility Results for Case IV ……………………………………………….121

4.7.5 Robustness and Imperceptibility Results for Case V ……………………………………………….122

4.7.5 Robustness and Imperceptibility Results for Case VI ……………………………………………….123

4.8 Definition of Different Scenarios …………………………………………………………………………………..125

4.8.1 Robustness and Imperceptibility Results for Case I ……………………………………………….126

4.8.2 Robustness and Imperceptibility Results for Case II ……………………………………………….127

4.8.3 Robustness and Imperceptibility Results for Case III ……………………………………………….129

4.8.4 Robustness and Imperceptibility Results for Case IV ……………………………………………….130

6.8.5 Robustness and Imperceptibility Results for Case V ……………………………………………….131

4.8.6 Robustness and Imperceptibility Results for Case VI ……………………………………………….132

4.8.7 Robustness and Imperceptibility Results for Case VII ……………………………………………….133

4.9 Definition of Different Scenarios ………………………………………………………………………………135

4.9.1 Robustness and Imperceptibility Results for Case I ……………………………………………….136

4.9.2 Robustness and Imperceptibility Results for Case II ……………………………………………….138

4.9.3 Robustness and Imperceptibility Results for Case III ……………………………………………….139

4.9.4 Robustness and Imperceptibility Results for Case IV ……………………………………………….141

4.9.5 Robustness and Imperceptibility Results for Case V ……………………………………………….143

4.9.6 Robustness and Imperceptibility Results for Case VI ……………………………………………….144

4.9.6 Robustness and Imperceptibility Results for Case VII ……………………………………………….145

4.10 Performance Evaluation of the Developed Algorithm ……………………………………………….148

4.11 Comparison of Results ………………………………………………………………………………………………..149

4.11.1 Comparison of PSNR, NCC and SSIM Results of Various Defined Scenarios under No Attack …………149

4.11.2 Comparison of PSNR, NCC and SSIM Results of Various Defined Scenarios under Gaussian Attack …………152

4.11.3 Comparison of PSNR, NCC and SSIM Results of Various Defined Scenarios under Salt and Pepper Attack ..154

4.11.4 Comparison of PSNR, NCC and SSIM Results of Various Defined Scenarios under Speckle Attack …………157

4.12 Validation …………………………………………………………………………………………159

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION

5.1 Summary …………………………………………………………………………………………163

5.3 Conclusion …………………………………………………………………………………………164

5.4 Significant Contributions …………………………………………………………………………………………167

5.5 Limitations …………………………………………………………………………………………167

5.6 Recommendations for future work …………………………………………………………………………………………168

REFERENCES

INTRODUCTION

The rising demand for the production, storage and transmission of multimedia contents (such as image, audio, video and text) over secured and unsecured communication media in recent years poses a lot of security and privacy concerns to both the sender and receiver. The use of these multimedia contents (image, audio, video and text) is rapidly increasing with the high growth and widespread use of the Internet and information technology.

Due to this fact, tampering with and illegal distribution of digital contents is inevitable and as such, it becomes imperative to devise mechanisms to protect the copyright of such media. It has been established that present copyright laws are insufficient for addressing the security of digital contents (Chandramouli et al., 2002).

Furthermore, simple transfer and manipulation of digital data also institute a real menace for information inventors, and copyright owners want to be pre-compensated every period their work is used. In addition, they want to be certain that their work is not deployed in an illegitimate means (for instance modified without their consent).

REFERENCES

Abdullatif, M., Zeki, A. M., Chebil, J., & Gunawan, T. S. (2013). Properties of digital image watermarking. Paper presented at the Signal Processing and its Applications (CSPA), 2013 IEEE 9th International Colloquium on.
Ahmad, A., Sinha, G., & Kashyap, N. (2014). 3-level DWT Image watermarking against frequency and geometrical attacks. International Journal of Computer Network and Information Security, 6(12), 58.
Al-Mansoori, S., & Kunhu, A. (2012). Robust watermarking technique based on DCT to protect the ownership of DubaiSat-1 images against attacks. International Journal of Computer Science and Network Security (IJCSNS), 12(6), 1.
Alléaume, R., Treussart, F., Messin, G., Dumeige, Y., Roch, J.-F., Beveratos, A., . . . Grangier, P. (2004). Experimental open-air quantum key distribution with a single-photon source. New Journal of physics, 6(1), 92.
Anghel, C. (2009). Base selection and transmission synchronization algorithm in quantum cryptography. arXiv preprint arXiv:0909.1315, p1-4.
Anitha, V., & Velusamy, R. L. (2012). Authentication of digital documents using secret key biometric watermarking. InternationalJournal of Communication Network Security, 1(4), 5-11.
Araghi, T. K., Manaf, A. B. A., Zamani, M., & Araghi, S. K. (2016). A survey on digital image watermarking techniques in spatial and transform domains. Int. J. Adv. Image Process. Techn.–IJIPT, 3(1), 6-10.
Arnold, M. K., Schmucker, M., & Wolthusen, S. D. (2003). Techniques and applications of digital watermarking and content protection: Artech House.

CSN Team.

Join Over 5 Million Subscribers Today!


=> FOLLOW US ON INSTAGRAM | FACEBOOK & TWITTER FOR LATEST UPDATE

Tags: , , ,

Comments are closed.

%d bloggers like this: