Development of Pilot Size Process for Zeolite Y and Zsm-5 Production : Current School News

Development of Pilot Size Process for Zeolite Y and Zsm-5 Production from Kankara Kaolin

APPLY NOW 👉 WORK IN CANADA WITH FREE SPONSORSHIP!


 

Development of Pilot Size Process for Zeolite Y and Zsm-5 Production from Kankara Kaolin. 

ABSTRACT  

The successes recorded at the laboratory for the synthesis of zeolite Y and ZSM-5 using Kankara kaolin sourced from Katsina state, Nigeria as starting material necessitated the need for upscale of the production process. This thesis focused on the development of three pilot-size production units and characterizing the products obtained from those units. Pilot size reactors for dealumination and production of zeolite Y and ZSM-5 were developed and test run. 

Manual means of the design were adopted; the materials of construction were carefully selected for the fabrication stage. The process of producing zeolite from kaolin involves kaolin beneficiation, calcination, dealumination, zeolite recipe preparation, and crystallization. The capacity of the pilot size dealumination, zeolite Y, and ZSM-5 reactors was 2.5 kg, 2 kg, and 4 kg per run respectively. The reaction temperature and time for the production of zeolite Y were 100°C and 7 hours respectively.

Low-temperature production of ZSM-5 was achieved at 95°C for a period of 5 days. The physicochemical properties of the raw material, intermediate products (beneficiated kaolin, metakaolin, and silica), and final products (zeolite Y and ZSM-5) were characterized using Fourier Transformation Infrared (FTIR), X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Thermogravimetry Analysis (TGA), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Selected Area Electron Diffraction (SAED), Energy Dispersive x-ray Spectrometer (EDS), and Brunauer-Emmett-Teller (BET) methods. 

TABLE OF CONTENTS

Title Page ……………………………………………………………………………………… i
Declaration ………………………………………………………………………………………ii
Certification ………………………………………………………………………………………iii
Dedication ………………………………………………………………………………………iv
Acknowledgments………………………………………………………………………………………v
Abstract ………………………………………………………………………………………vi
Table of Contents ………………………………………………………………………………………viii
List of Figures ………………………………………………………………………………………xv
List of Tables ………………………………………………………………………………………xx
List of Plates ………………………………………………………………………………………xxii
List of Appendices ………………………………………………………………………………………xxiv
Abbreviations and Symbols ………………………………………………………………………………………xxv

CHAPTER ONE

1.0 INTRODUCTION ………………………………………………………………………………………1
1.1 Background ………………………………………………………………………………………1
1.2 Research Problem Statement ………………………………………………………………………………………4
1.3 Research Aim and Objectives ………………………………………………………………………………………5
1.4 Research Scope ………………………………………………………………………………………5
1.5 Research Justification ………………………………………………………………………………………6

CHAPTER TWO

2.0 LITERATURE REVIEW ………………………………………………………………………………………7
2.1 Background ………………………………………………………………………………………7
2.2 Pilot Plant ………………………………………………………………………………………7
2.2.1 Pilot plant objectives ………………………………………………………………………………………8
2.2.2 Prerequisite for pilot plant ………………………………………………………………………………………9
2.3 Reactor Design ………………………………………………………………………………………10
2.3.1 batch reactor ………………………………………………………………………………………12
2.3.2 Continuous-flow, stirred tank reactor (CSTR) ……………………………………………………..12
2.3.3 Tubular reactor ………………………………………………………………………………………13
2.4 Materials Selection ………………………………………………………………………………………13
2.5 Catalyst Formulation ………………………………………………………………………………………17
2.5.1 Commercial catalyst ………………………………………………………………………………………18
2.5.2 Fluid catalytic cracking (FCC) catalyst …………………………………………………………………19
2.6 Zeolite ………………………………………………………………………………………21
2.6.1 Natural zeolite ………………………………………………………………………………………22
2.6.2 Synthetic zeolite ………………………………………………………………………………………23
2.6.3 Global zeolite production and applications …………………………………………………………..25
2.6.4 Zeolite Y ………………………………………………………………………………………27
2.6.5 ZSM-5 ………………………………………………………………………………………28
2.7 Kaolin ………………………………………………………………………………………29
2.7.1 Kaolin purification ………………………………………………………………………………………30
2.7.2 Thermal treatment of kaolin ………………………………………………………………………………………31
2.7.3 Acid leaching of metakaolin ………………………………………………………………………………………32
2.7.4 Application of kaolin ………………………………………………………………………………………32
2.7.5 Occurrence of kaolin in Nigeria ………………………………………………………………………………………33
2.8 Material Characterization ………………………………………………………………………………………34
2.8.1 Energy dispersive x-ray fluorescence ………………………………………………………………………………………35
2.8.2 X-ray powder diffraction ………………………………………………………………………………………36
2.8.3 Fourier transform infrared spectroscopy ………………………………………………………………………………………37
2.8.4 Braunner-Emmett-Teller (BET) surface area measurement …………………………………..38
2.8.5 Scanning electron microscope……………………………………………………………………………………..40

CHAPTER THREE

3.0 MATERIALS, EQUIPMENT, AND METHODOLOGY……………………………………………………………………..41
3.1 Introduction ………………………………………………………………………………………41
3.2 Materials and Apparatus ………………………………………………………………………………………41
3.2.1 Materials ………………………………………………………………………………………41
3.2.2 Apparatus ………………………………………………………………………………………43
3.3 Equipment ………………………………………………………………………………………44
3.4 Design Stage ………………………………………………………………………………………45
3.4.1 Dealumination unit ………………………………………………………………………………………45
3.4.2 Sizing of zeolite reactor ………………………………………………………………………………………48
3.4.3 Engineering drawings ………………………………………………………………………………………48
3.5 Material Selection for Fabrication …………………………………………………………………………..50
3.5.1 Dealumination unit ………………………………………………………………………………………50
3.5.2 Zeolite Y and ZSM-5 reactor ………………………………………………………………………………………52
3.6 Pilot Size Process Units Fabrication ……………………………………………………………………….53
3.6.1 Dealumination reactor ………………………………………………………………………………………53
3.6.2 Zeolites reactors ………………………………………………………………………………………54
3.7 Zeolite Production Process from Kaolin …………………………………………………………………….57
3.7.1 Kaolin beneficiation ………………………………………………………………………………………57
3.7.2 Calcination of beneficiated kaolin …………………………………………………………………………..58
3.7.3 Dealumination of metakaolin ………………………………………………………………………………..59
3.7.4 Aluminum hydroxide production ………………………………………………………………………………..60
3.7.5 Sodium silicate production ………………………………………………………………………………………61
3.7.6 Silica sol preparation ………………………………………………………………………………………63
3.7.7 Gel preparation for zeolite Y production ………………………………………………………………………………………64
3.7.8 Crystallization of zeolite Y ………………………………………………………………………………………64
3.7.9 ZSM-5 production ………………………………………………………………………………………65
3.7.10 Protonation of zeolites ………………………………………………………………………………………66
3.7.11 Thermal stabilization of zeolite Y ………………………………………………………………………………………67
3.8 Physicochemical Characterization ………………………………………………………………………………………67
3.8.1 Fourier transform infrared spectroscopy (FTIR) ………………………………………………………………………………………67
3.8.2 X-ray diffraction (XRD) ………………………………………………………………………………………67
3.8.3 X-ray fluorescence (XRF) ………………………………………………………………………………………68
3.8.4 Scanning electron microscopy (SEM) ………………………………………………………………………………………68
3.8.5 Transmission electron microscopy (TEM) ………………………………………………………………………………………68
3.8.6 Thermogravimetric analysis (TGA) ………………………………………………………………………………………69
3.8.7 Brunauer-Emmett-Teller (BET) analysis ………………………………………………………………………………………69
3.9 Catalyst Performance Test ………………………………………………………………………………………69

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION ………………………………………………………………………………………72
4.1 Dealumination Reaction Time ………………………………………………………………………………………72
4.2 Summary of Design Parameter and Fabricated Equipment ………………………………………73
4.3 Physicochemical Characterization of Starting Raw Material ………………………………………….75
4.3.1 Fourier transformed infrared radiation analysis of Kankara kaolin ………………………….75
4.3.2 X-ray diffraction (XRD) analysis of Kankara kaolin………………………………………… 76
4.3.3 X-ray fluorescence (XRF) analysis of Kankara kaolin……………………………………….. 77
4.3.4 SEM and TEM analysis of Kankara kaolin ……………………………………………………………………………..78
4.4 Characterization of Beneficiated Kaolin and Metakaolin …………………………………………………….79
4.4.1 Fourier transformed infrared analysis…………………………………………………………………………………… 79
4.4.2 X-ray diffraction (XRD) analysis……………………………………………………………………………………… 80
4.4.3 X-ray fluorescence (XRF) analysis………………………………………………………………………………………81
4.4.4 SEM and TEM analysis of metakaolin…………………………………………………………………………….. 82
4.5 Dealumination Process……………………………………………………………………………………… 84
4.5.1 Fourier transformed infrared radiation analysis of silica …………………………………………………………..86
4.5.2 X-ray diffraction (XRD) analysis of silica………………………………………………………………………………. 87
4.5.3 X-ray fluorescence (XRF) analysis of silica……………………………………………………………………………. 88
4.5.4 SEM and TEM of silica prepared from Kankara kaolin …………………………………………………………….88
4.6 Dealumination Reactor Efficiency ………………………………………………………………………………………90
4.6.1 FTIR spectra of the solid reaction product ……………………………………………………………….90
4.6.2 XRD patterns of the solid reaction product …………………………………………………………………91
4.6.3 Solid product quality ………………………………………………………………………………………91
4.6.4 Evaluation of reactor efficiency ………………………………………………………………………………………92
4.7 Physicochemical Characterization of Aluminum Hydroxide ……………………….93
4.7.1 FTIT spectrum of aluminum hydroxide produced from Kankara kaolin………………………..93
4.7.2 XRD pattern of aluminum hydroxide produced from Kankara kaolin ………………………………94
4.7.3 SEM and TEM Images of aluminum hydroxide produced from Kankara kaolin ……………………95
4.8 Other Intermediate Products Highlight ………………………………………………………………………….97
4.9 Zeolite Reactor Development ………………………………………………………………………………………98
4.9.1 Heating method ………………………………………………………………………………………98
4.9.2 Products yield ………………………………………………………………………………………………………102
4.9.3 Zeolites process development …………………………………………………………………………………..103
4.9.4 Products quality ……………………………………………………………………………………………………107
4.9.5 Laboratory and pilot plant comparison ……………………………………………………………………..109
4.9.6 Zeolite transformation and compounding …………………………………………………………………….112
4.10 Physicochemical Characterization of Zeolite Y Produced from Pilot Unit ………………………..115
4.10.1 FTIR of zeolite Y ………………………………………………………………………………………115
4.10.2 XRD analysis of zeolite Y ………………………………………………………………………………………116
4.10.3 SEM images of zeolite Y ………………………………………………………………………………………116
4.10.4 TEM image and EDS of zeolite Y ………………………………………………………………………..117
4.10.5 TG analysis of zeolite Y ……………………………………………………………………………..118
4.10.6 BET analysis of Zeolite Y ……………………………………………………………………………..119
4.11 Physicochemical Characterization of ZSM ……………………………………………………………..119
4.11.1 FTIR analysis of ZSM-5 ………………………………………………………………………………………119
4.11.2 XRD pattern of ZSM-5 ………………………………………………………………………………………120
4.11.3 SEM analysis of ZSM-5 ………………………………………………………………………………………121
4.11.4 TEM analysis of ZSM-5 ………………………………………………………………………………………122
4.11.5 BET analysis of ZSM-5 ………………………………………………………………………………………123
4.12 Physicochemical Characterization of Commercial FCCU Catalyst ……………………………….124
4.13 Performance Test ………………………………………………………………………………………127
4.14 Preliminary Full-Scale Forecast for Reactors Capacity

CHAPTER FIVE

5.0 CONCLUSIONS AND RECOMMENDATIONS …………………………………………………………….133
5.1 Conclusions ………………………………………………………………………………………133
5.2 Recommendations ………………………………………………………………………………………134
Contributions to Knowledge ………………………………………………………………………………………135
Publications ………………………………………………………………………………………136

INTRODUCTION 

Industrialization remains a major factor in measuring the development of a nation because it reduces the volume of importation and strengthens the economy of the nation. Chemical transformation of raw materials to products is one of the key industrial processes aimed at meeting the ever-rising needs of the global teeming population.

 Catalysts play a central role in most of the chemical transformation process and contribute immensely to the reduction in process thermal energy requirement, process simplification, reduced processing time, and most often reduction in materials requirement, thereby increasing output quantity and quality; which translates to higher profitability. 

Scale-up has been usually explained as to how to design a pilot or industrial reactor able to replicate through a standard methodology the results obtained in the laboratory. Scaling up reactors is a fundamental step in the realization and optimization of industrial plants. Nigeria, with a huge amount of oil reserves estimated to be about 3 7.2 billion barrels and the 13th-word producer of petroleum, with four refineries across the nation and a total processing capacity of 450,000 barrels per day consumes approximately 1600 tonnes of zeolite catalyst per day. The catalysts are imported annually over 500,000 tonnes, at a cost of about 5 billion naira  

REFERENCES

Abo-El-Enein, S. A., Heikal, M., Amin, M. S. and Negm, H. H. (2013), Reactivity of
dealuminated kaolin and burnt kaolin using cement kiln dust or hydrated lime as
activators. Construction and Building Materials, 47: 1451–1460.
Adamczyk, Z. and Bialecka, B. (2005), Hydrothermal Synthesis of Zeolites from Polish Fly
Ash, Polish Journal of Environmental Studies, 14(6): 713-719
Aderemi, B.O. and Oludipe, J.O.: (2000). Dealumination of Kankara Kaolin Clay –
Development of Governing Rate Equation. Nigerian Journal of Engineering, 8(2), 22-
30.
Aderemi, B.O, Oloro, E.F, Joseph, D, Oludipe, J. (2001) Kinetics of the Dealumination of
Kankara Kaolin Clay, Nigerian Journal of Engineering, 9 (1), 40-44.
Aderemi, B.O; Ahmed, A.S; Abdul B.D (2006). Production of alum from Kankara clay. In
Journal of Nigeria Society Chemical Engineering. 21(1,2), 120-124.
Aderemi B.O. and Hameed, B.H. (2011), Alumina from kaolin – Extraction and
Characterization. Nigerian Metallurgical Society Conference, November: 75-80.
Adewuyi, Y., Klocke, D., Buchanan, J., 1995. Effects of high-level additions of ZSM-5 to a
fluid catalytic cracking (FCC) RE-USY catalyst. Applied Catalysis A 131, 121–133.
Ahmed, K.S. (1986), Development of phosphate bonded fireclay refractory castables. An
M.Sc thesis. Department of Chemical Engineering, Ahmadu Bello University, Zaria,
Nigeria.
Ahmed, A. S. (2011), Potentials and Development of Zeolite Catalysts for Nigerian Oil and
Gas Industry, Annul Lecture of the PTDF Professorial Chair in Chemical Engineering,
ABU., Zaria, booklet, November.

CSN Team.

APPLY NOW 👉 WORK IN CANADA WITH FREE SPONSORSHIP!


 

    Hey You!

    Don't Miss These Opportunity! Enter Your Details Below!


    => FOLLOW US ON INSTAGRAM | FACEBOOK & TWITTER FOR LATEST UPDATE

    Tags: , , , , ,

    Comments are closed.

    %d bloggers like this: